

ELIZADE UNIVERSITY

ILARA-MOKIN

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATION 2017 / 2018 ACADEMIC SESSION

COURSE CODE: CSC 435

COURSE TITLE: Numerical Analysis

COURSE LEADER: Dr. Vincent Akpan

DURATION: 2 ½ Hours

Ber

HOD's SIGNATURE

INSTRUCTION:

Candidates should answer any THREE Questions in all.

Students are warned that possession of any unauthorized materials in an examination is a serious offence.

1. (a) Distinguish between the following terms:

(i) Interpolation (ii) Curve fitting (iii) Time-Series

(b) Given the following data points,

Х	0	2	3
У	7	11	28

Use the Lagrange's method to determine y at x = 1.

(c) Determine the parameters a and b so that $f(x) = ae^{bx}$ fits the following data in the least-squares sense:

х	1.2	2.8	4.3	5.4	6.8	7.9
У	7.5	16.1	38.9	67.0	146.6	266.2

Fit $\ln y_i$ and compute the standard deviation.

2. (a) (i) What is least-squares fit?

(ii) What is linear regression?

(b) Suppose that following data points lie on a polynomial.

1	g and points he on a polyholilar.						
	X	-2	1	4	-1	3	-4
	У	-1	2	59	4	24	-53

Determine the degree of this polynomial by constructing the divided difference table.

(c) Use natural cubic spline to determine y at x = 1.5. The data points are:

X	1	2	3	4	5
<u>y</u>	0	1	0	1	0

3. (a) The behaviour of a fairly large class of discrete-time systems can be modeled by the following general mathematical formula:

$$A(z^{-1})Y(k) = z^{-d} \frac{B(z^{-1})}{F(z^{-1})} U(k) + \frac{C(z^{-1})}{D(z^{-1})} e(k)$$

(where all symbols have their usual meaning).

Using the above equation, deduce the mathematical model structure that corresponds to the:

- (i) AutoRegressive with eXogenous inputs (ARX) model.
- (ii) AutoRegressive Moving Average with eXogenous inputs (ARMAX) model.
- (iii) Output Error (OE) model.
- (c) Using the results in (c) and starting from any known principles, deduce an expression and draw the resulting neural network model structure that corresponds to the:
 - (i) Neural Network AutoRegressive with eXogenous inputs (NNARX) model.
 - (ii) Neural Network AutoRegressive Moving Average with eXogenous inputs (NNARMAX) model.
 - (iii) Neural Network Output Error (NNOE) model.
- (c) Assuming that 3 past inputs and outputs are sufficient to model a 5-input 3-output system using a dynamic feedforward neural network autoregressive moving average with exogenous inputs (NNARMAX) model with 15 input-to-hidden layer neurons.
 - (i) What is the number of output neurons?
 - (ii) Compute the total number of inputs to the neural network.
 - (iii) Compute the dimension of the input-to-hidden layer weight.
 - (iv) Compute the dimension of the hidden-to-output layer weight.
- 4. (a) Fuzzy logic model comes in two flavours, namely: Mamdani-type and Sugeno-type (also called Takagi-Sugeno-Kang (TKS)).
 - (i) State where each type of the above fuzzy logic models can find applications.
 - (ii) Briefly state three advantages each for the two model types.
 - (b) (i) What is the main argument for the introduction of the Adaptive neural fuzzy inference system (ANFIS).
 - (ii) Draw the typical architecture of a five-layer ANFIS and state the function of each layer.
 - (c) A single layer perceptron is initialized with weights $w_1 = 1$ and $w_2 = 2$ with bias b = -2 for a simple output classification problem. Given the inputs u = [0.5, 0.5] and the target output as y = +1. Assuming that the network has an Heaviside activation function where $F(\cdot) = 1$, if $(\cdot) > 0$ and $F(\cdot) = -1$, otherwise.
 - (i) What are the final values of the weights and bias?
 - (ii) In how many iterations does the perceptron output converges to the desired target output?
- 5. (a) (i) Distinguish between numerical differentiation and numerical integration.
 - (ii) State which of numerical differentiation or integration is more efficient. Give at least two reasons to support your answer.
 - (b) (i) Derive the Newton-Cotes formulas.
 - (ii) Derive the trapezoidal rule from 3(b)(i) above.
 - (iii) Derive the composite trapezoidal rule from 3(b)(ii) above.